This is the top of the page.
Displaying present location in the site.
  1. Home
  2. About NEC
  3. Research and Development @NEC Laboratories Europe
  4. Collaborative R&D Projects
Main content starts here.

Collaborative R&D Projects

Ongoing Projects

CleanSky >

The CleanSky  project is a Marie Curie ITN (Innovative Training Networks) that aims to develop innovative ideas in the emerging areas within the "eco-system" of cloud computing: data center evolution, consolidation and service migration, and beyond, via structural training of young researchers. To achieve this goal, CleanSky creates a multidisciplinary (computer science, telecommunications, scientific computing and optimization theory), international (four European countries plus USA and China) and intersectoral (public and private; education and industry) environment to embed a pool of young researchers for innovative research in cloud computing.
CleanSky develops innovative methodologies and approaches (i) to satisfy application requirements and ensure efficiency for cloud computing, (ii) to optimize the energy and provisioning costs of individual data centers, (iii) to consolidate, when necessary, multiple data centers to a small set of cloud data center sites through service migration and cloud resource pooling, and (iv) to exploit renewable energy sources in cloud data centers.


CPaaS.io – City Platform as a Service.Integrated and Open >

CPaaS.io is a joint R&D project between Europe and Japan. It aims at Innovations for Smart City. This involves creating value for the society and all players in the city environment – people, private enterprises, public administrations. To reach this goal, the CPaaS.io platform integrates the capabilities of the Internet of Things (IoT), big data analytics and cloud service provisioning with Open Government Data and Linked Data approaches.

Supported by the EU under Horizon 2020 grant agreement number 723076.*


FIESTA >

FIESTA works towards providing a blueprint experimental infrastructure, tools, techniques, processes and best practices enabling IoT testbed/platforms operators to interconnect their facilities in an interoperable way, while at the same time facilitating researchers and solution providers in designing and deploying large scale integrated applications (experiments) that transcend the (silo) boundaries of individual IoT platforms or testbeds. FIESTA will enable researchers and experimenters to share and reuse data from diverse IoT testbeds in a seamless and flexible way by making information available on a semantic level. This will open up new opportunities in the development and deployment of experiments that exploit data and capabilities from multiple testbeds.
NEC Laboratories Europe will create an experiment that is portable across different FIESTA testbeds, requiring only different configurations. It serves the purpose of showing that semantic interoperability across different IoT infrastructures can be achieved, thereby greatly simplifying the development of applications.

Supported by the EU under Horizon 2020 grant agreement number 643943*


REPLICATE (REnaissance in PLaces with Innovative Citizenship And TEchnology)

The REPLICATE project belongs to the EU “Lighthouse” projects for Smart Cities and Communities. This project involves deriving solutions aiming to provide increasing quality of life for citizens through innovative new services in the digitalized city. The project will be deployed in Bristol/UK, San Sebastien/ Spain and Florence/ Italy. Through the integration of energy, transportation and ICT service solution, the impact of innovative technologies used to co-create smart city services will be demonstrated in close engagement with the citizens. In the REPLICATE project, NEC Laboratories Europe contributes cooperative control strategies in the energy management system of selected districts in Bristol city. We focus on the control of the demand-supply for increased local exploitation of fluctuating supply across multiple public infrastructures, integrating power/heating grid, transportation, buildings and connected homes.

Supported by the EU under Horizon 2020 grant agreement number 691735.*


SCOUT (Safe and COnnected aUtomation in road Transport) >

SCOUT is a Coordination and Support Action within the Horizon 2020 programme. It has started on July 1, 2016 and will develop viable pathways for the large-scale rollout of high-degree automated driving in Europe. The project will bring together the automotive, telecom and ICT industries in order to conceive use cases and business models that will best leverage the investments into technology development and infrastructure deployment. User needs and expectations as well as technical and non-technical gaps will be analyzed and the results will be condensed into a cross-sectorial roadmap.


SSICLOPS >

SSICLOPS will empower enterprises to create and operate a high-performance private cloud infrastructure that allows flexible scaling through federation with other private clouds. SSICLOPS will identify performance issues and missing system features of current state of the art cloud infrastructure software by instrumenting and measuring a diverse set of actual cloud workloads. It will then address these shortcomings through novel cloud infrastructure protocols and mechanisms in order to maximize the performance across a broad spectrum of workloads.

Within SSICLOPS, NEC Laboratories Europe will investigate enhancing programmability of network elements, making datacenter networks better adaptable to specific requirements of application workload and transport protocols. NEC Laboratories Europe will continue innovating software-based networked systems including software switches, flexible architectures for host stacks, and richer APIs to higher layers

Supported by the EU under Horizon 2020 grant agreement number 644866*


SUPERFLUIDITY >

The SUPERFLUIDITY project aims at achieving superfluidity (state in which matter behaves like a fluid with zero viscosity) in the Internet: the ability to instantiate services on-the-fly, run them anywhere in the network (core, aggregation, edge) and shift them transparently to different locations.
SUPERFLUIDITY aims to provide in this way a converged cloud-based 5G concept that will enable innovative use cases in the mobile edge, empower new business models, and reduce investment and operational costs. In the SUPERFLUIDITY project, NEC Laboratories Europe works on the performance optimization operating systems and hypervisors in order to create virtual network functions that can support the superfluidity vision.

Supported by the EU under Horizon 2020 grant agreement number 671566.*


TREDISEC >

The TREDISEC project aims to develop systems and techniques to make the cloud a secure and efficient heaven to store data. By doing so, TREDISEC plans to step away from a myriad of disconnected security protocols or cryptographic algorithms, and to converge instead to a single secure cloud framework.
In the TREDISEC project, NEC Laboratories Europe focuses on the analysis and implementation of a set of cloud security primitives to ensure the confidentiality and integrity of outsourced data in the presence of a powerful attacker. In addition, our proposed security primitives will enable scalable and efficient storage at the cloud by supporting data deduplication. TREDISEC technologies will be tested and evaluated in cloud environments by leveraging realistic use-cases provided by the cloud infrastructures and client-bases of TREDISEC partners.

Supported by the EU under Horizon 2020 grant agreement number 644412.*


VirtuWind >

The VirtuWind project targets an SDN/NFV ecosystem, based on open, modular and secure framework. This project will showcase a prototype for intra- and inter-domain scenarios in real wind parks as a representative use case of industrial networks. To accomplish this task, the project develops specific mechanisms guaranteeing industrial-grade QoS, security, reliability and resilience requirements for mission-critical infrastructures. At the same time, the project aims to simplify service programmability by exposing high-level APIs for industrial applications in SDN/NFV infrastructures. Simplified and centralized network management and service deployment facilitates operational tasks for wind park operators and increases overall service velocity. As a result, the VirtuWind project is aimed at providing solutions for decreasing capital and operational expenditure costs in wind parks and in the energy generation sector in overall.

Supported by the EU under Horizon 2020 grant agreement number 671648.*


Wise-IoT (World-wide Interoperability for Semantic IoT) >

WISE IoT is a collaboration project between Europe and the Republic of Korea. It aims at amplifying the interoperability and interworking of IoT existing systems. The project will use the experiences already available in the consortium to build up a comprehensive mediation framework that can be used between various IoT systems.
WISE IoT also strives to establish federated and interoperable platforms while ensuring end-to-end security and trust for reliable business environments with a multiplicity of IoT applications. Setting up synergies with national and international initiatives in both Europe and Korea, the project takes action in the field of standardization, promoting IoT development and interoperability.

Supported by the EU under Horizon 2020 grant agreement number 723156.*

The European flag

* This project has received funding from the European Union’s Horizon 2020 research and innovation programme.

Completed Projects

Top of this page